为了探寻非线性、非高斯系统滤波的最优算法,运用Python搭建Monte Carlo仿真实验模型,观察了扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)、重要性重采样算法(SIR)和辅助粒子滤波(APF)的状态估计曲线,对比了仿真结果的RMSE平均值,对各种滤波算法进行性能评估。实验结果表明,EKF对于强非线性系统会出现滤波发散现象,APF比UKF和SIR有更好的跟踪准确性。