摘要

在未知环境下基于单目视觉的机器人同时定位、地图构建和目标追踪的耦合问题(SLAMOT)中,需要足够的视差才能满足目标跟踪的可观性条件。同时,针对目标运动的不确定性以及系统对于目标运动方式的未知性,提出一种基于次优视差的多模滤波目标跟踪算法。首先,采用目标不确定性椭球投影面积变化最大的方向为次优视差方向,并将其作为机器人视差控制方向;然后,采用多模滤波算法计算目标各种运动方式的概率;其次,对各运动方式的目标状态进行估计,最后根据各运动方式的概率加权估计出目标状态。另外,考虑到工程应用中应减小能耗,因此,在满足目标跟踪要求的条件下,降低视差速度。仿真实验表明:视差速度为0.3 m/s时,次优视差算法的残差均值为0.16 m,而启发式算法、多模滤波算法、传统扩展卡尔曼滤波(EKF)算法的残差均值为0.25 m、0.06 m和0.16 m。在视差速度较低时,所提算法也能满足目标跟踪的可观性条件,具有较强的工程应用价值。