摘要
红外成像是现代战场侦察的重要手段,基于红外图像的目标识别技术可为情报解译提供重要支撑。针对红外图像目标识别,提出基于筛选深度特征的方法。设计适当结构的ResNet对红外图像进行特征学习,对于每个卷积层的输出特征图进行矢量化处理,获得相应的特征矢量。针对各个特征图的深度特征矢量,基于斯皮尔曼等级相关系数评价它们与原始图像的相关性。然后,通过门限判决算法选取若干具有高相关性的深度特征。经过筛选得到的深度特征可剔除了不必要的冗余成分,从而提升后续分类的精度和稳健性。采用联合稀疏表示模型对筛选得到的若干深度特征进行表征和分类,最终获取待识别样本的所属类别。因此,方法可有效结合ResNet多层次深度特征的鉴别力,从而提高最终的识别性能。实验在公开的中波红外目标图像数据集(MWIR)开展,利用原始测试样本、模拟噪声样本和模拟遮挡样本对方法性能进行测试和分析。实验结果表明,相比现有的部分红外目标识别方法,提出方法可取得更强的有效性和稳健性。
- 单位