摘要
为精准化管理果园,针对存在裸露土壤、遮蔽物、果树冠层阴影和杂草等复杂环境下难以提取导航线问题,通过无人机搭载多光谱相机获取苹果园影像数据后提取果树像元并进行全局果树行导航线提取。通过处理多光谱影像数据得到正射影像图(DOM)、数字表面模型(DSM)图像,选取并计算易于区分杂草与苹果树的归一化差异绿度指数(NDGI)、比值植被指数(RVI)分布图,构建DSM、NDGI、RVI融合图像后,综合利用过绿植被(EXG)指数和归一化差异冠层阴影指数(NDCSI)以阈值分割法剔除融合图像中土壤、遮蔽物、阴影等像元,降低非植被像元对果树提取的干扰。对比使用支持向量机(SVM)法、随机森林(RF)法和最大似然(MLC)法分别提取最终融合图像和普通正射影像中的苹果树像元,并计算混淆矩阵评价各识别精度。试验表明,MLC法对融合图像中果树的识别效果最优,其用户精度、制图精度、总体分类精度、Kappa系数分别为88.57%、93.93%、93.00%、0.882 4;相对于普通正射影像,本文构建的最终融合图像使3种方法的识别精度均得到有效提升。其中,融合图像对RF法的用户精度提升幅度最大,为27.12个百分点;对SVM法的制图精度提升幅度最大,为9.03个百分点;对3种方法的总体分类精度提升幅度最低为13个百分点;对SVM法的Kappa系数提升幅度最大,为22.55%,且对其余两种方法的提升也均在20%以上。将本文得到的苹果树像元提取结果图像做降噪、二值化、形态学转换等处理后,以感兴趣区域划分法提取各果树行特征点,并以最小二乘法拟合各行特征点得到导航线,其平均角度偏差为0.597 5°,10次测试整体平均用时为0.402 3 s。所提方法为复杂环境中果树像元和果树行导航线提取提供了重要依据。
- 单位