摘要
针对传统交通车辆实时检测技术在检测速度和准确性等方面存在的问题,提出了改进型YOLOv4-Tiny交通车辆图像实时检测模型。改进该模型的CSPResNet和空间金字塔池化(Spatial Pyramid Pooling, SPP),减少模型的计算量;改进特征金字塔网络(Feature Pyramid Network, FPN)及使用池化特征增强方法,增加少量计算量,获取模型的多尺度特征图以提升精度;引入注意力机制,增强模型对通道和空间特征的关注。实验结果表明,改进的YOLOv4-Tiny算法相比原YOLOv4-Tiny算法,模型平均精度均值(mean Average Precision, mAP)提升了4.67%,检测速度提升了2.5帧/秒,模型大小减少了52.74%,能够满足交通车辆实时检测对精度和实时性的要求。
- 单位