摘要
针对在指静脉识别中特征提取困难以及深度学习方法在添加新类别时需要重新学习的问题,提出使用Siamese卷积神经网络进行指静脉相似度计算的识别方法。首先利用Sobel算子对图像边缘检测,通过形态学处理提取感兴趣区域(ROI),获取识别图像;其次,构建卷积神经网络提取有效的特征编码,在Siamese网络中使用编码计算距离,并使用三元组损失函数定义目标函数。实验结果表明,在公开的指静脉数据库验证,提出的算法获得较高的识别准确率,在指静脉识别中具有一定的实用价值。
-
单位上海大学; 自动化学院