摘要
声纹识别利用说话人生物特征的个体差异性,通过声音来识别说话人的身份。声纹具有非接触、易采集、特征稳定等特点,应用领域十分广泛。现有的统计模型方法具有提取特征单一、泛化能力不强等局限性。近年来,随着人工智能深度学习的快速发展,神经网络模型在声纹识别领域崭露头角。文中提出基于长短时记忆(Long Short-Term Memory, LSTM)神经网络的声纹识别方法,使用语谱图提取声纹特征作为模型输入,从而实现文本无关的声纹识别。语谱图能够综合表征语音信号在时间方向上的频率和能量信息,表达的声纹特征更加丰富。LSTM神经网络擅长捕捉时序特征,着重考虑了时间维度上的信息,相比其他神经网络模型,更契合语音数据的特点。文中将LSTM神经网络长期学习的优势与声纹语谱图的时序特征有效结合,实验结果表明,在THCHS-30语音数据集上取得了84.31%的识别正确率。在自然环境下,对于3 s的短语音,该方法的识别正确率达96.67%,与现有的高斯混合模型和卷积神经网络方法相比,所提方法的识别性能更优。
- 单位