摘要

针对实际生产中,石化设备故障呈现出"不均衡小样本"特性,致使传统诊断模型适用性不足,准确率低下这一问题,基于一类支持向量机(One-Class SVM)和遗传算法优化的支持向量机(GA-SVM),提出一种分步诊断策略。利用One-Class SVM构建超球诊断模型,可在没有任何故障先例的前提下实现异常状态辨识和未知故障甄别,提升算法对不均衡监测数据(正常样本数量远超故障样本数量)的适用性;利用GA-SVM,针对小样本故障数据集构建并优化智能诊断模型,判别故障模式,降低算法对大量有标签故障样本的依赖。故障诊断实验结果表明,该方法能够在不均衡小样本场景中显著降低漏报率、误报率和误诊率,对实验数据和工程数据的诊断准确率分别达99%和100%。

  • 单位
    中国石油化工股份有限公司青岛安全工程研究院