摘要
针对传统领域知识实体抽取算法主要依赖专家的专业知识,需要的标注工作量较大,本文提出了基于远程监督的实体抽取算法并应用于粮油存储领域。算法在PU学习的框架下,通过判定和分类2个阶段抽取实体,利用双向长短期记忆网络进行二分类实体判别。再通过全连接网络实体类型判别,构建了一个粮油领域知识图谱。研究表明:本算法可以应用于粮油存储领域的知识图谱构建,适用于训练实体样本较少的实体抽取任务,能够缩小使用双向长短期记忆网络算法进行实体抽取任务所需的语料规模,并在使用更小语料规模的情况下达到与经典双向长短期记忆网络算法相当的实体抽取效果。
- 单位