对于小样本电磁信号识别,数据增强是一种最为直观的对策。利用生成对抗网络(GAN)产生虚假信号样本,设计粗粒度和细粒度筛选机制对生成信号进行筛选,剔除质量较差的生成信号,实现训练样本集的有效扩充。为验证所提数据增强算法的有效性,在RADIOML2016.04C数据集上进行测试。实验结果表明,本文所提方法对小样本电磁信号识别准确率有较好的提升效果。