摘要

针对鲸鱼优化算法(WOA)在解决高维、多峰、最优值非原点等问题时存在的收敛精度低、易被局部最优捕获等缺陷,提出了一种基于多维度变异学习与收散归优的鲸鱼优化算法(MLDOWOA)。首先,引入自适应权值以及优势个体干扰动态调整个体螺旋包围的方向,提高了算法的全局搜索能力和收敛精度;然后提出多维度变异学习机制对种群变异方向进行自适应规划,进一步扩大了算法的搜索范围;最后引入收散归优机制协调了搜索步长,帮助种群突破了中后期搜索停滞的局限。通过8个高维基准函数和4个固定维基准函数对MLDOWOA算法进行测试,结果表明同基本算法WOA、SSA以及改进的ACWOA、AWOA、MSIWOA、ADWOA相比,该算法在收敛精度和应对高维函数的能力上具有显著的优越性。将该算法应用于FOPID控制器的参数整定,并将实验结果同近年来该工程问题的研究成果进行对比分析,证明了该算法在FOPID参数整定问题中具有卓越的性能。

全文