摘要

递归神经网络(RNN)模型近年来在许多任务上表现出了优良的性能。运用具有长短期记忆(LSTM)单元的递归神经网络构建模型和通过时间反向传播(BPTT)算法更新网络权重解决长期降雨量的预测问题,较好地解决了高维数、非线性和局部极小问题。选取了前馈神经网络模型(FNN)、小波神经网络(WNN)模型和整合移动平均自回归(ARIMA)模型3种模型进行验证比较。仿真结果表明,递归神经网络模型优于其他模型,训练结果与实际值接近,预测精度较高。预测结果为农业用水管理、合理制定灌溉制度提供了重要的科学依据。

  • 单位
    西安交通大学机械制造系统工程国家重点实验室