推荐系统的目的是通过利用用户的评价信息,实现从过载的信息中识别出用户感兴趣的内容.移动环境下的空间数据复杂性较高,并且用户的上下文信息更加模糊,从而使得移动个性化推荐相比于传统领域面临更大的挑战.本文通过介绍传统推荐算法和移动环境下个性化推荐的特性,给出了移动推荐的挑战;在基于GPS信息的出租车线路推荐和旅游包推荐两个移动案例基础上,提出了移动序列推荐问题及基于约束的旅游推荐问题,并给出了相应的解决方案.