摘要
视频特征的提取是行为识别方法中一个关键步骤,当视频场景中存在无关行人或者背景干扰时,提取的特征往往会包含较多的干扰信息,这将严重影响分类器的分类效果,进而影响行为识别准确率。针对这类问题,提出了一种基于显著性区域的红外行为识别方法。该方法对视频序列提取光流运动历史图(optical flow-motion history image,OF-MHI)特征,获取视频序列的运动信息,此步骤旨在消除图像背景及静止目标干扰。利用类别激活映射(class activation map,CAM)方法进一步消除运动目标干扰,获得兴趣目标显著性区域,进而获得显著性区域特征图。输入卷积神经网络(convolutional neural network,CNN)提取最终特征,并采用支持向量机(support vector machine,SVM)获得识别结果。与传统方法相比,实验结果表明,该方法有效地提升了识别准确率。
- 单位