由于当前已有方法未能对采集的空气污染数据进行归一化的加权平均处理,导致空气污染物监测执行率和监测结果准确性下降。为此,结合数据融合技术,提出一种基于数据融合的空气污染物监测方法。采集空气中不同污染物数据,将其进行融合。在此基础上,将归一化加权平均算法和模糊神经网络算法结合,对空气污染物质量进行监测,获取不同污染物的浓度变化情况。仿真实验结果表明,所提方法可以全面提升空气污染物监测执行率以及监测结果准确性,能够实现空气污染物准确监测。