摘要
针对目前室内场景视频中关键物体的检测、跟踪及信息编辑等方面主要是采用人工处理方式,存在效率低、精度不高等问题,提出了一种基于纹理信息的室内场景语义标注学习方法。首先,采用光流方法获取视频帧间的运动信息,利用关键帧标注和帧间运动信息进行非关键帧的标注初始化;然后,利用非关键帧的图像纹理信息约束及其初始化标注构建能量方程;最后,利用图割方法优化得到该能量方程的解,即为非关键帧语义标注。标注的准确率和视觉效果的实验结果表明,与运动估计法和基于模型的学习法相比较,所提基于纹理信息的室内场景语义标注学习法具有较好的效果。该方法可以为服务机器人、智能家居、应急响应等低时延决策系统提供参考。
- 单位