摘要

随着互联网技术的快速发展,在智能制造过程中会伴随着出现海量的工艺知识数据,为了提升对于工艺数据的充分利用和掌握,提出一种知识推理框架下的改进自组织映射算法。在协同训练的思想下,对于知识库当中的工艺知识数据进行自组织映射网络下的筛选优胜,提高优胜单元的抗局部最优能力;利用改进自组织映射算法对特征优胜单元进行知识推理准则判断,在向量空间的映射下,通过双曲空间距离公式优选出置信度高的样本数据进行更新子代样本集;为了进一步提升特征信息的利用率,在知识推理框架下多次循环筛选提高工艺知识数据的有效预测。通过对铣削过程中真实数据进行建模仿真,验证了所提方法在面对多样本数据的情况下的良好预测优化的性能。