为实现砂轮磨损状态的实时监测评估,课题组提出了使用自适应模糊神经网络模型对砂轮状态进行监测。通过对磨削过程的振动信号及声发射信号特征值的提取,获得了不同磨损程度砂轮的多特征信号样本;采用多特征信号样本对自适应模糊神经网络进行学习与训练,建立了砂轮磨损状态识别模型;实现了对砂轮磨损状态的准确识别与在线监测。实验表明:基于自适应模糊神经网络的砂轮磨损程度评估系统,测试样本的实际磨损程度和网络判别结果类别相符。该自适应模糊神经网络系统能够对砂轮磨损程度类型准确进行在线评估。