摘要

为提高滚动轴承故障诊断的性能,结合故障敏感特征的选择,提出了一种基于小波包变换(WPT)和监督NPE的滚动轴承故障诊断模型。首先,WPT对原始振动信号进行处理,利用终端节点的单支重构信号得到多域统计特征,构成原始特征集。然后,为减少特征集中的冗余信息和干扰特征,提出一种基于朴素贝叶斯的故障敏感特征选择方法(FSNB)。为了进一步降低冗余信息和运算复杂度,提出一种基于类别标签的监督邻域保持嵌入(SNPEL)方法,实现对高维特征集的低维表示。最后,利用K近邻(KNN)算法实现滚动轴承的故障诊断。采用12种轴承故障数据来验证提出的故障诊断模型的性能,结果表明,提出的模型可以实现较高的故障诊断准确度和较好的适应性。