摘要

在公共安全领域,监控视频中的人脸识别技术是不可或缺的技术,成为研究热点.而监控视频中低质量的人脸图像会大大降低整个人脸识别系统的识别准确率,系统难以更广泛地被投入实际使用.本文提出了一种基于CNN的人脸图像质量评估方法.通过对Alexnet模型进行改进,将网络中的多个卷积层与全连接层连接,从而提取不同尺度的图像特征.通过端到端的训练过程,预测人脸图像质量分数.另外,采用人脸识别算法来标定人脸图像的质量分数,使质量分数能更有效地筛选出适合识别算法的图像.在Color FERET数据集上实验表明,本文方法能够准确地对人脸图像进行质量评估.而在实际采集的监控视频数据集上实验表明,本文方法能筛选出高质量的人脸图像用作后续人脸识别,提高人脸识别准确率.

全文