摘要
针对传统LiDAR里程计(LO)测量方法在处理无初值、长序列点云配准时存在精度低、稳定性差等问题,本文引入端到端点云配准网络(HRegNet),提出一种基于深度神经网络的LO测量方法——HRegNet-LO算法,以期实现更加准确、鲁棒的LO测量。所提算法由两个核心模块组成:前端计算和后端优化。在前端scan-to-scan配准中,主要是依据原始点云的3D坐标,采用HRegNet网络,计算出相邻两帧点云的初始转换矩阵,实现LO初始位姿计算;在后端scan-tomap配准中,主要是通过提取特征点构建特征地图,应用迭代最近邻点(ICP)算法,每间隔一定距离对初始位姿进行优化,以减小预估轨迹中的漂移。在Kitti odometry数据集上对所提算法的性能进行了评估,并与LOAM、F-LOAM等算法作对比分析。实验结果表明,所提算法相对旋转、平移误差分别在0.003°/m和1%左右,每帧位姿计算耗时约为100 ms,可以满足LO测量对于精度和实时性的要求。
-
单位信息工程大学地理空间信息学院