摘要

为降低传统多目标天线拓扑优化问题的计算量,本文提出一种基于竞争的二进制多目标灰狼优化算法(CBMOGWO)。该方法引入种群竞争机制,以减轻电磁(EM)仿真的负担并获取适当的适应度值。此外,我们引入余弦振荡函数来改进原始二进制多目标灰狼优化算法(BMOGWO)的线性收敛因子,以在探索和开发之间达到良好平衡。然后,通过与原始BMOGWO和传统二进制多目标粒子群优化(BMOPSO)在12个多目标优化测试问题(MOTPs)和4个多目标背包问题(MOKPs)上比较,验证了CBMOGWO的性能。最后,通过具有高维混合设计变量和多个目标的紧凑型高隔离双频多输入多输出(MIMO)天线的示例,验证了我们的方法在降低计算成本方面的有效性。实验结果表明,与传统方法相比,CBMOGWO节省近一半的计算成本,这表明我们的方法对于复杂天线拓扑优化问题是高效的。它为基于多目标进化算法(MOEA)以灵活高效的方式探索新的和意想不到的天线结构提供了新思路。