摘要

HNN是一类基于物理先验学习哈密尔顿系统的神经网络.本文通过误差分析解释使用不同积分器作为超参数对HNN的影响.如果我们把网络目标定义为在任意训练集上损失为零的映射,那么传统的积分器无法保证HNN存在网络目标.我们引进反修正方程,并严格证明基于辛格式的HNN具有网络目标,且它与原哈密尔顿量之差依赖于数值格式的精度.数值实验表明,由辛HNN得到的哈密尔顿系统的相流不能精确保持原哈密尔顿量,但保持网络目标;网络目标在训练集、测试集上的损失远小于原哈密尔顿量的损失;在预测问题上辛HNN较非辛HNN具备更强大的泛化能力和更高的精度.因此,辛格式对于HNN是至关重要的.