为解决混合属性中数值属性与分类属性相似性度量的差异造成的聚类效果不佳问题,分析混合属性聚类相似性度量的问题,提出基于熵的混合属性聚类算法。引入熵离散化技术将数值属性离散化,仅使用二元化距离度量混合属性对象之间的相似性,在聚类过程中随机选取k个初始簇中心,将其它对象按照距离k个簇中心的最小距离划分到相应的簇中,选择每个簇中每个数据属性中频率最高的属性值形成新的簇中心继续划分对象,迭代此步当满足目标条件时停止,形成最终聚类。在UCI数据集上的实验结果验证了该算法的有效性。