摘要

电磁感知是现代社会迫切需要的非接触式探测技术,而实现实时数据处理、低成本、低能耗的智能电磁感知系统一直是微波探测领域的长期追求目标.为了实现这一目标,文中将能够任意调控电磁波前的可编程超表面与具有强大信息处理能力的深度学习技术相结合,实现了智能电磁感知系统;并分别从理论、系统设计与实验三个角度深入研究了深度学习驱动的智能电磁感知方法.文中首先利用"k空间"法分析了基于可编程超表面的电磁感知系统的理论分辨率和影响因素;然后介绍了一款32×24的1比特可编程超表面的系统设计,并实验验证了其动态调控电磁波前的良好性能;在此基础上将深度学习技术引入感知系统中,建立了自适应处理高维感知数据的成像卷积神经网络,实现了高保真度的人体姿态成像.本文的研究成果可用于指导智能电磁感知系统的设计与分析,并且为未来人工智能时代的电磁感知系统开辟了一条新的途径.