摘要
为充分利用所有评分,缓解数据稀疏性问题,将概率统计领域的Jensen-Shannon(JS)散度引入相似性度量中,提出了一种新的项目相似性度量算法。该算法将项目的评分信息转化为评分值密度,并依据评分值的密度分布来计算项目相似性。同时,引入评分数量因子,进一步提升了基于JS的相似性度量方法的性能。最后,以基于JS的相似性度量方法为基础,设计了相应的协同过滤算法。在MovieLens数据集上的实验结果表明,所提算法在预测误差和推荐准确性方面均有良好的表现。因此,该算法在推荐系统中具有很好的应用潜力。
-
单位重庆邮电大学; 经济管理学院