基于YOLOv5和U-Net3+的桥梁裂缝智能识别与测量

作者:余加勇*; 刘宝麟; 尹东; 高文宇; 谢义林
来源:湖南大学学报(自然科学版), 2023, 50(05): 65-73.
DOI:10.16339/j.cnki.hdxbzkb.2023056

摘要

为了克服传统数字图像处理方法进行桥梁裂缝识别时面临的效率低、效果不佳等问题,提出了集成深度学习YOLOv5和U-Net3+算法的一体化桥梁裂缝智能检测方法 .通过调整算法宽度和深度参数,优化边界框损失函数,构建基于YOLOv5目标检测算法的裂缝识别定位模型,实现桥梁裂缝快速识别与定位;引入结合深度监督策略及预测输出模块的U-Net3+图像分割算法,训练并构建桥梁裂缝高效分割模型,实现像素级裂缝智能化提取;建立结合连通域去噪、边缘检测、形态学处理的八方向裂缝宽度测量法,基于U-Net3+裂缝分割结果实现裂缝形态及宽度高精度测量;利用LabelImg图像标注软件制作包含4 414张图像的裂缝识别定位模型训练数据集;利用LabelImg图像标注软件及CFD数据集制作包含908张图像的裂缝分割模型训练数据集;利用无人机航拍的485张5 280×2 970 pixels桥梁索塔裂缝图像,来制作裂缝智能检测模型的测试对象.将所提出的裂缝检测方法应用于上述裂缝测试对象,其裂缝识别定位准确率91.55%、召回率95.15%、F1分数93.32%,裂缝分割准确率93.02%、召回率92.22%、F1分数92.22%.结果表明,基于YOLOv5与U-Net3+的桥梁裂缝智能检测方法,可实现桥梁裂缝高效率、高精度、智能化检测,具有较强的研究价值和广泛的应用前景.

  • 单位
    土木工程学院; 江苏省水利科学研究院; 湖南大学