摘要
结合小波包短时能量散布熵、回溯搜索算法以及学习矢量神经网络,提出一种基于声信号的滚动轴承故障诊断新方法。首先利用小波包分解结合短时能量对声信号进行脉冲能量提取,突出与故障相关的时频子空间的能量分布,再通过计算各子空间短时能量序列的散布熵,构造特征矩阵。利用t-分布随机邻域嵌入方法对所获特征进行降维聚类,显示所提取的特征具有较好的聚类性能。然后采用回溯搜索算法优化学习矢量量化建立神经网络故障诊断模型,对轴承故障进行识别,并与多种诊断方法进行比较,试验结果表明,加入短时能量散布熵后,本模型提升了声信号的能量特性,优化了特征矩阵,诊断性能最佳。
- 单位