摘要
将卷积神经网络(CNN)应用于振动信号分析时,往往会出现由于一维信号转化为二维特征导致的计算量巨大的问题,针对这一问题,对卷积神经网络输入构造及不同构造方式对神经网络性能的影响进行了研究。基于机泵振动信号分析特点,提出了一种新的将一维振动信号转换为二维的特征快速构造方法;基于特征快速构造方法和卷积神经网络,构建了机泵故障智能识别模型;利用某石化现场轴承故障和不平衡故障数据对故障模型进行了测试,并与其他信号转化方法及故障识别模型进行了对比。研究结果表明:不同故障类型模型均可以快速收敛,故障识别准确率均达95%以上;在故障识别准确率和训练效率方面,该模型较其他模型有着较显著的优势。
- 单位