针对萤火虫算法后期收敛较慢以及求解精度不高的问题,提出了精英正交学习萤火虫算法。该算法利用精英萤火虫采用正交学习策略来构造指导向量,以保存和发现最优方向信息,从而引导群体更准确地飞向全局最优区域。同时,还采用了自适应步长技术来更好地平衡算法探索与开发能力,采用最小吸引力参数保证高维空间距离过大的个体之间的相互吸引。在6个经典测试函数上与标准萤火虫算法及其它3种改进的萤火虫算法进行了对比,实验结果表明,提出的算法具有较快的收敛速度和较高的收敛精度。