摘要
设计了一种集成通道注意力机制的YOLOV5s检测网络的驾驶行为识别方法,用以实时检测并识别驾驶员在驾驶室内的驾驶行为,从而有利于纠正驾驶员的不良驾驶行为,减少交通事故发生的概率;建立了驾驶室内驾驶员手部动作的图像数据集;在YOLOv5s网络结构中引入通道注意力机制,通过对比实验、消融实验研究了通道注意力模块嵌入YOLOv5s中的较佳作用位置、配置数量的影响及其检测识别性能效果;论证了带通道注意力的改进YOLOV5s可保留信息量大的特征、抑制不相关的特征,模型参数量和复杂度降低,从而加快检测速度;测试结果显示,较原YOLOV5s网络,改进的YOLOV5s在平均精确度和召回率上相当,而检测速度提升了26.08%,该方法能够较好地满足驾驶员手部动作的实时监控需求。