摘要

针对近红外光下现有的人眼定位算法普遍存在准确性不高、泛化能力不佳等问题,提出了一种基于方向梯度直方图(HOG)和支持向量机(SVM)相结合的双眼虹膜图像的人眼定位算法。利用HOG提取虹膜图像的人眼特征,并结合SVM分类器对HOG特征进行训练从而实现人眼的精确定位。为了减少漏检和误检,进一步提高定位准确率,又提出了多级级联SVM分类器算法;另外针对近红外光线下虹膜图像独特的灰度分布特点,设计了一种图像预处理方法,能够显著提高人眼定位速度。在MIR2016和CASIA-IRIS-Distance数据集上的实验结果表明,基于HOG和SVM的双眼虹膜图像的人眼定位算法具有高准确率、强泛化能力和高实时性。