摘要
随着电影网站用户数量以及电影数量的上升,用户评分数据变得极其稀疏,导致推荐系统推荐质量下降。针对这一问题,文章在传统基于项目的推荐算法(IBCF)基础上提出基于共现潜在语义向量空间模型(CLSVSM)的项目评分预测算法。文章先通过CLSVSM得到电影共现矩阵以及电影共现相对强度矩阵,然后利用电影之间的共现潜在关系对评分矩阵进行补全,在此基础上预测用户对未观看的电影评分,进而生成推荐。实验结果表明:与传统的IBCF推荐算法相比,CMLVSMIBCF算法的均方根误差(RMSE)和平均绝对误差(MAE)分别下降17.7%和17.6%。新提出的算法计算出的电影之间的相似度更准确,有效地减小了数据稀疏性对推荐结果的影响,显著提高了电影网站的推荐质量。
- 单位