摘要

传统基于注意力机制的推荐算法只利用位置嵌入对用户行为序列进行建模,忽略了具体的时间戳信息,导致推荐性能不佳和模型训练过拟合等问题。提出基于时间注意力的多任务矩阵分解推荐模型,利用注意力机制提取邻域信息对用户和物品进行嵌入编码,借助艾宾浩斯遗忘曲线描述用户兴趣随时间的变化特性,在模型训练过程中引入经验回放的强化学习策略模拟人类的记忆复习过程。真实数据集上的实验结果表明,该模型比现有推荐模型具有更好的推荐性能。