摘要

智能教育中,试题推荐方法是数据挖掘在教育测量领域的新运用,是自适应测试的智能化和个性化程度的重要体现,目前主流的试题推荐方法有两类,分别是协同过滤试题推荐方法和认知诊断试题推荐方法,前者忽略了独立个体的知识属性,后者缺乏对种群的共性评估。针对上述问题,为提高试题推荐的精确度和效率,综合考虑独立被试者的知识属性和类环境群体的知识共性,文中提出了基于协同过滤和认知诊断的试题推荐方法。首先,设计了基于多级属性评分的认知诊断模型,并利用该模型对被试者的答题情况进行建模;然后,将被试者的知识属性掌握模式用于概率矩阵分解,预测被试者的潜在答题情况;最后,根据信息量指标向被试者动态地推荐合适的试题。试题推荐方法综合考虑了个体的个性特征和群体的共性特征,提高了解释性和可靠性。实验结果表明,相比单协同过滤试题推荐算法和认知诊断选题策略,所提方法的测试效率分别提升了20.35%和2.5%。

  • 单位
    中国人民解放军装备学院