摘要
异常检测使用有限的训练集获得区分度高的特征,但是当异常实例与正常实例存在较多相似特征时,模型会因为异常特征参与正常特征编码产生误差。针对上述问题,提出了一种新型的对比记忆网络的弱监督视频异常检测方法。该方法在自动编码器的基础上使用对比学习框架,分离出与实际异常相似的样本特征,并设计记忆网络抑制正常样本内偏向异常的特征表达,提高了重建样本的稳定性。该算法构建了一种两阶段的异常行为检测网络。在阶段一,利用对比学习方法来增加正常行为特征和异常行为特征的差异,并利用该阶段学习到的特征构造记忆网络的增强项与抑制项。在阶段二,将记忆网络增强项设为多时刻正常行为特征,并利用记忆网络的抑制项更新增强项中偏向异常的特征信息,从而区分编码中正常与异常特征。该方法在UCF Crime和ShanghaiTech数据集的平均AUC值达到83.26%和87.53%,相较于现有方法分别提升了1.14%和2.43%。结果显示,该方法能够有效预测异常事件的发生时间。
- 单位