摘要
利用分布式传感器网络进行目标跟踪,能够有效增加传感器的覆盖范围,提高对运动目标的检测和跟踪能力,但如何充分利用相邻传感器之间的信息进行有效的融合,仍然是一个难点问题。本文在多伯努利滤波(Multi-Bernoulli,MB)框架下,提出了一种改进的分布式融合跟踪算法用于目标数未知且变化的多目标跟踪。提出算法包含三种精度提升策略,即特征级融合反馈、决策级融合输出及交互反馈;其中,决策级融合输出策略可以提取更加准确的估计状态,特征级融合反馈策略可以降低错误融合结果对后续滤波过程的不良影响,交互反馈策略可以避免单传感器因漏检而导致的滤波失败。实验结果表明,提出算法的跟踪精度明显要优于传统的基于广义协方差交集(Generalized Covariance Intersection,GCI)的分布式融合算法以及粒子多伯努利跟踪算法,具有较好的跟踪性能。
- 单位