摘要
随着城市化进程的加速,智慧交通领域得到了越来越多的关注。利用深度补全技术提取物体深度信息对实现车辆目标跟踪、目标间距离计算等任务具有重要作用,但在实际中收取的多源深度补全数据存在关联偏差,导致产生较难纠正的精度误差。针对该问题,文中研究了基于多源数据关联融合的深度补全技术。该技术通过计算多通道置信度增强深度图,将图像和毫米波雷达点云数据进行更精准的数据层逐点关联。通过设计多尺度注意力融合模块,实现了对多粒度关联数据的自适应融合,生成了高质量的深度图。文中在公开的nuScenes数据集中开展了大量实验,实验结果表明文中所提方法平均绝对误差为1.142 m,低于现有基准方法的1.472 m。
- 单位