针对河南省某水库监测点实测的1991~2013年每月的平均流量样本进行归一化处理作为训练样本,构建了使用Morlet、Mexican hat以及高斯一阶导数小波基函数小波神经网络的预测模型实现对2014年的月平均流量的预测,并通过均方误差(MSE)和平均绝对误差(MAE)两项指标对每种网络的预测结果进行评价,从而选择较好的小波基函数作为小波神经网络的隐含层传递函数。研究表明,采用Morlet小波作为神经网络的隐含层基函数对该水库的月平均流量的预测效果要好于其他两种神经网络。