摘要

由于水下环境具有不稳定性,水下图像可能会出现偏色、对比度低以及运动模糊等退化现象。针对这些问题,本文提出了适用于水下图像的增强算法,其实现需要依次经过颜色恢复和去模糊这2个阶段。在第一阶段中,本文增强算法先利用高斯滤波和均值漂移对图像进行锐化;然后,通过对比图像各颜色通道的均值得到补偿值对图像颜色进行校正;最后通过线性拉伸来调整图像的对比度。在第二阶段中,采用带有残差思想的生成对抗网络(Generative Adversarial Networks, GAN),利用9个连续的残差网络能够很好地提取图像中的特征,可起到消除模糊和增强图像特征的作用。利用本文算法处理水下图像时,发现本文方法不仅能去除图像模糊,而且能消除图像的色偏现象且不携带红色伪影。同时,通过对比水下图像质量度量(Underwater Image Quality Measures, UIQM)和水下彩色图像质量评估(Underwater Color Image Quality Evaluation, UCIQE)这2项指标发现,本文算法有较好的图像处理效果。