摘要

区块链领域技术主题的自动识别与技术主题范畴的自动分类研究,为拓展领域研发主题和推动领域发展提供情报支持。以德温特专利数据库中的中国区块链技术专利为样本,设计和实现基于机器学习的区块链技术主题识别与自动分类模型,实现基于LDA主题模型的区块链技术主题识别。基于专利文献特征向量空间,形成技术主题范畴的分类体系,最终实现基于传统机器学习和深度学习模型的区块链技术主题自动分类。研究发现:LDA主题模型能够有效识别出区块链技术领域的主题类别,并构建出技术主题类别的特征向量空间,共识别出18个技术主题,按照研究方向归纳为区块链架构研究、区块链行业应用研究、数据存储和数据安全保护研究、高新技术应用研究4类主题范畴;通过交叉融合LDA主题模型、传统机器学习与深度学习等机器学习方法,能够有效实现领域技术主题范畴的自动分类。分类结果显示,支持向量机、LightGBM、LSTM、BP神经网络、逻辑回归模型等分类模型的性能较优,准确率为84%~87%,精确率为79%~83%,其中逻辑回归模型的自动分类效果更显著。