摘要

为提高蛋鸡产蛋率预测效果,采用改进神经网络算法。首先依据神经网络误差与动态因子来优化神经网络权值,神经网络自适应学习速率在算法运行前期较大从而加快学习,后期迅速减小,加速收敛,减小误差,提高网络训练精度;接着神经网络的激活函数采用修正线性激活函数ReLu,使得计算速度加快;然后建立预测模型以及产蛋率预测评价指标;最后给出蛋鸡产蛋率预测流程。试验仿真显示:本文算法对蛋鸡产蛋率预测接近实际值,相关系数相比SVM、ELM、NN、PSONN、ACNN分别提高0.58%、0.48%、0.40%、0.28%、0.23%,均方误差相比SVM、ELM、NN、PSONN、ACNN分别减少5.89%、4.92%、3.93%、2.67%、1.81%,优于其他算法,为蛋鸡产蛋率预测提供新的思路与方法。

  • 单位
    黄淮学院

全文