摘要

高光谱(HS)遥感图像含有丰富的光谱信息,但是空间分辨率较低,而全色(PAN)遥感图像空间分辨率较高。针对高光谱遥感图像与全色遥感图像的融合问题,提出了一种新的基于边缘保持滤波和结构张量的遥感图像融合算法。首先,为了提取高光谱遥感图像的空间信息,提出使用边缘保持滤波方法,该提取方法可以保证提取的信息全部为空间细节信息,避免低频混叠。其次,对全色遥感图像采用高斯-拉普拉斯图像增强算法进行图像锐化,降低图像噪声,锐化细节信息。再次,为得到总空间信息,提出使用结构张量的自适应加权策略。传统的融合算法通常仅从全色遥感图像中提取空间信息,可能会引起光谱失真或空间细节加入不足等问题,为了克服这些问题,提出的自适应加权策略得到的总空间信息不仅包含全色遥感图像的空间信息,还包含高光谱遥感图像的空间信息,且自适应加权相对于全局常数加权,可以自动选取更加合适的加权数据。最后,通过构建可以控制光谱和空间失真的增益矩阵,将总空间信息注入到插值的高光谱遥感图像的每个波段中,得到融合的高光谱图像。实验结果表明,本文提出的遥感图像融合算法,在客观评价方面,取得了最优的空间和光谱性能,在视觉效果上,与其他融合算法相比,可以更有效地提高空间分辨率和保持光谱信息。

全文