从时域角度分析了滚动轴承的振动信号,综合利用SVM和KPCA方法来实现对滚动轴承的故障诊断研究。首先对滚动轴承的原始信号从时域角度分析提取典型特征,再利用KPCA方法对输入的典型特征降维,最后采用SVM算法对降维后的数据进行故障诊断。实验证明:该方法在保证较高的故障识别能力的前提下,不仅能够有效地提取损伤特征、降低数据维数,而且实现了数据可视化。