摘要

针对引力搜索算法存在的易早熟收敛、易陷入局部最优、搜索精度有待提高等缺陷,提出一种混合方法优化的自适应引力搜索算法(gravitational search algorithm,GSA)。首先利用Sobol序列初始化种群,增强算法全局搜索能力;其次引入Hamming贴进度计算种群成熟度,判断种群是否早熟;然后引入Logistic混沌对种群作混沌搜索,变异已陷入局部最优的粒子位置;最后基于早熟收敛判断因子改进引力系数,并为粒子位置公式添加收缩因子,促使种群加快脱离局部最优。对9个不同类型的基准测试函数做仿真实验,结果表明新算法能有效改善种群的早熟问题,具备更好的寻优性能。