摘要
老挝语属于低资源语言,在有限的语料中获取更多的语义信息可以有效解决汉语和老挝语短文本相似度计算不准确的问题。多任务学习是有效获取语义信息的一种方法,该文对汉语和老挝语短文本特点进行研究后,提出一种融合词性位置特征的多任务汉老双语短文本相似度计算方法:首先,通过词性位置特征权重和TF-IDF权重加权表征双语短文本的同时,使用改进后的TextRank算法获取双语短文本的核心句;然后,通过带有自注意力机制的双向长短时记忆网络分别计算双语短文本的相似度与双语短文本对应核心句的相似度;最后,使用多任务学习方法,将双语短文本的核心句相似度计算作为辅助任务,获取更多的语义信息进行共享以提升汉老双语短文本相似度计算模型的性能。实验结果表明,该文提出的方法在有限的训练语料下取得了更好的效果,F1值达76.16%。
-
单位信息工程大学; 昆明理工大学; 自动化学院