摘要
针对风力机齿轮箱振动信号非线性和非平稳性的特征,提出基于模糊熵(Fuzzy Entropy,FE)和灰狼算法优化(Grey Wolf Optimizer,GWO)的支持向量机(GWO Support Vector Machine,GWO-SVM)的故障诊断方法。通过集合经验模态分解算法(Ensemble Empirical Mode Decomposition,EEMD)对振动信号进行分解得到若干本征模态函数(Intrinsic Mode Function,IMF)分量;求取各状态IMF分量的模糊熵并构建特征向量;将各特征向量输入GWO-SVM模型进行故障识别及分类。结果表明:齿轮箱振动信号不同状态下的模糊熵有一定区分度,通过GWO-SVM能对其进行精确识别和分类,且GWO-SVM相对于粒子群优化(Particle Swarm Optimization,PSO) SVM模型和遗传算法(Genetic Algorithm,GA)优化SVM模型具有更短的运行时间和更高准确率,平均准确率高达92.5%。
- 单位