摘要
在基于位置的社交网络(LBSNs)中,如何利用用户和兴趣点的属性(或特征)之间的耦合关系,为用户做出准确的兴趣点推荐是当前的研究热点。现有的矩阵分解推荐方法利用用户对兴趣点的评分进行推荐,但评级矩阵通常非常稀疏,并且没有考虑用户和兴趣点在各自属性方面的耦合关系。本文提出了一种基于深度神经网络的兴趣点推荐框架,首先采用K-means算法对兴趣点按地理位置进行聚类,使位置相近的兴趣点聚为一类;然后,构建一个卷积神经网络模型,用来学习用户和兴趣点在各自属性(如用户年龄与兴趣点位置之间)上的显式关联关系;同时,构建另外一个神经网络模型,模拟机器学习中的矩阵分解方法,根据用户的签到行为,深入挖掘用户与兴趣点之间的隐式关联关系。最后,将用户与兴趣点之间的显式和隐式关联关系进行集成,综合表征用户-兴趣点之间的耦合关系,然后将学习到的用户-兴趣点耦合关系输入到一个全连接网络中进行兴趣点推荐。本文所提出的模型在Yelp数据集上进行了评估,实验结果表明该模型在兴趣点推荐方面有较高的推荐准确性。
- 单位