摘要

选取秦皇岛港口动力煤价格作为研究对象,搜集10年间煤价数据并分析其影响因素,确定煤炭产量、港口库存、运输成本、火力发电量及社会用电量为主要影响因素;分别建立ARIMA(2,1,2)模型和RF(随机森林)模型并优化,通过加权平均法得到ARIMA和RF模型权重,建立ARIMA-RF组合模型。该模型较深度神经网络模型(DNN)、支持向量回归模型(SVR)、ARIMA模型、RF模型预测的煤价准确度更高,可准确预测动力煤价格走势,为调控能源消费强度、深化能源体制机制改革政策制定提供参考。