摘要

该文提出一种基于随机森林的不完整数据集的多功能雷达(MFR)辐射源识别方法,该方法在MFR辐射源波形单元识别框架基础上,首先对参数缺失的先验知识集进行多重划分,得到多个不含缺失参数的样本子集,然后删减冗余子集并利用随机森林算法对各个子集构建弱分类器,最后根据弱分类器对识别结果贡献率的不同,进行权值设定,得到最终的识别模型。仿真实验证实了提出的MDRF-WA方法能够提高少量先验知识条件下波形单元识别的准确率和鲁棒性,降低计算成本。

  • 单位
    中国人民解放军装备学院